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ABSTRACT 
 Autonomous vehicle perception has been widely explored using camera images but 

is limited with respect to LiDAR point cloud processing. Furthermore, focus is 

primarily on well-regulated environments, obviating a need for an algorithm that 

can contextualize dynamic and complex conditions through 3D point cloud 

representation. In this report, an Echo State Network for LiDAR signal processing 

is introduced and evaluated for its ability to perform semantic segmentation on 

unregulated terrains, using the RELLIS-3D open-source dataset. The L-ESN 

contains 16 parallel reservoirs with point cloud processing time of 1.9 seconds and 

83.1% classification rate of 4 classes defining terrain trafficability, with no prior 

feature extraction or normalization, and a training time of 31 minutes. A 2D cost 

map is generated from the segmented point cloud for integration as a perception 

node plug-in to system-level navigation architectures. 

 
Citation: S. Gardner, M. R. Haider, P. Fiorini, S. Misko, J. Smereka, P. Jayakumar, D. Gorsich, L. Moradi, and V. 

Vantsevich, “Lidar Semantic Segmentation with a Multi-reservoir Echo State Network for Off-road Terrain 

Perception”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 

NDIA, Novi, MI, Aug. 16-18, 2022. 

 

1. INTRODUCTION 
 Autonomous perception for vehicles targets the 

simplification of environmental information such 

that navigation response may receive occupancy 

grids or cost maps to perform autonomous 

maneuvering. This function remains a challenging 

active research domain for achieving true level-5 

driverless cars [1]. Contextualizing the scene’s 

dynamic and chaotic conditions in a fast manner is 

critical for attaining targeted vehicle velocities 

safely and reliably.   

 The task of perception in the context of hostile off-

road environments presents specific challenges. 

The environment is highly un-structured and 

changing, making differentiation between similar 

events a struggle. Other vehicles, people, and 

trafficable boundaries can be occluded in much 

more complex patterns than is the case with well-

defined road traffic. Adverse elements can be 

purposefully or inadvertently concealed by taking 

advantage of the natural environment.  

 Beyond the challenges posed by the natural 

environment, there is a lack of pertinent datasets 

needed to meet the complete spectrum of scenarios. 

Most openly available datasets are built using urban 
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settings, on-road operations, narrow ranges of 

anticipated events, and are recorded using the most 

common sensors, making training of customized 

sensor systems difficult.  

 
Figure 1. Perception Node Flow Diagram. The L-ESN and cost map 

are packaged within a framework that may be integrated into 

system-level architectures, communicating through ROS2 

Contextualizing the scene’s dynamic and chaotic 

conditions in a fast manner is the primary research 

motive of this work, critical for attaining targeted 

vehicle velocities. Autonomous perception can be 

broken into sub-functions: object detection for the 

identification and positioning of elements in the 

scene, region classification for the evaluation of 

terrain conditions surrounding the vehicle, and 

object tracking for tactical and defensive 

maneuvering. Each of the perception topics listed 

above are active research areas, notably in the 

context of autonomous driving, each with a large 

corpus of literature [2-4]. The region classification 

task is the focal topic of this research and can in 

first approximation be assimilated to a semantic 

segmentation. Semantic segmentation of an image 

or 3D point cloud consists of labelling each 

pixel/point of the image/frame according to a set of 

predefined categories. 

Semantic segmentation is usually applied to 

classification of foreground objects while here the 

intended result is the segmentation of background 

objects. This background scene does not present 

well defined edges and can continuously evolve 

from drivable to unpassable. The performance of 

learning models must consequently be assessed in 

this context. Furthermore, phenomena leading to 

difficult visual conditions should also be factored 

in to ensure the algorithm’s robustness and 

ultimately the vehicle’s ability to actively navigate. 

These hurdles are not usually considered in 

academic research since they present non-ideal or 

unrealized events seen on regulated roadways. This 

is partly addressed in this research from the 

representation of tire tracks in mud, puddles of 

water on a trail, and ultimately the perceived levels 

of traversability seen in unregulated terrain camera 

datasets [5-6]. 

This work addresses these issues by using an Echo 

State Network (ESN) to rapidly classify the point 

cloud of input LiDAR frames. Integration with 

larger systems as a perception node is included by 

generating a 2D cost map commonly required by 

navigation systems. The flow diagram of the 

perception node is outlined in Figure 1. This report 

explores the metrics of the modified ESN for 

LiDAR signal processing (L-ESN) using an online 

benchmarked dataset that uses complex off-road 

LiDAR point clouds. Section 2 reviews the 

mathematics of the L-ESN and explores the parallel 

ESN architecture. Section 3 covers the benchmark 

dataset and L-ESN testing parameters. Section 4 

shows the results of the trials. Section 5 explains 

the cost map and integration with autonomous 

vehicle systems. Section 6 contains a discussion, 

followed by a conclusion in Section 7. 

 

2. LiDAR Processing with the ESN 
  The Echo State Network (ESN) has been a 

popular approach to time-series signal supervised 

learning since 2008 [7-9], but few have explored it 

for LiDAR processing to this point. A challenge is 

that LiDAR point clouds are high-dimensional 

signals that have variable dynamics according to 

the behavior of the sensor, how quickly regions of 

interest change between frames, and overall point 

cloud complexity. This report explores a scalable 

option that reduces the need for extensive 

preprocessing or long training times by taking 

advantage of the fundamental ESN architecture. 

 Applying one recurrent neural network (i.e. one 

reservoir) to process a 1-D signal is the most 

common approach when using ESNs, but is not 

viable for high-dimensional signals like point 
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clouds due to high neuron requirements, which 

exponentially increases processing times (O2). 

Thus, the common approach is to generate a small 

set of feature values per point that are fed through 

the ESN to generate the desired classification. The 

output point cloud is generated one point at a time, 

and substantial preprocessing is required before the 

ESN operates. Instead, numerous parallel 

reservoirs may be used to process sections of the 

input, with a large output matrix being trained to 

interpret the states of the reservoirs and give a 

classification or prediction, referred to as a task. 

Such a concept has been considered in literature 

[10], but not heavily for complex image processing. 

This approach avoids the problem of exponential 

training/processing time of a single central 

reservoir and distributes the computational load 

among many smaller reservoirs, allowing for 

substantially greater neuron-to-input ratios. 

The basic Echo State Network architecture 

consists of an input signal or image represented as 

a vector. The input is multiplied by a random input 

weight matrix (Win) and then passed through the 

reservoir with weights Wres. The reservoir is a 

recurrent neural network of standard leaky 

integrator neurons, which acts to transform the 

linear data into a high-dimensional, separable 

domain space. The neurons take on a value 

according to the input, collectively called the state 

vector, as defined by Equation (1). In the equation, 

X is the input data, W are the weight vectors, S are 

the collected states of the neurons in the reservoirs, 

and α is the learning rate. Ridge regression in 

Equation (2) or Moore-Penrose Pseudo-inverse is 

then used to generate an output weight vector that 

can interpret the reservoir states and give a 

classification. β is a regularization term to prevent 

overfitting, I is the identity matrix, and Y is the 

classified output point cloud. With the output 

weights calculated, the ESN simply needs an input 

to generate a classification according to Equation 

(3). 

𝑆 = (1 − 𝛼)𝑆 + 𝛼tanh(𝑊𝑟𝑒𝑠𝑆 +𝑊𝑖𝑛𝑋)    (1) 

𝑊𝑂𝑈𝑇 = 𝑌𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝑇(𝑆𝑆𝑇 + β𝐼)−1        (2) 

𝑌𝑇𝐴𝑅𝐺𝐸𝑇 = 𝑊𝑂𝑈𝑇𝑆                           (3) 
Literature shows that using multiple smaller 

parallel and/or series reservoirs have more 

improved network performances than a single large 

reservoir [11]. This concept is applied to the 

modified ESN by having multiple parallel 

reservoirs that split the input image into equal 

portions as visualized in Figure (2), with the total 

neuron count being number of parallel reservoirs 

times neurons per reservoir. 

 
Figure 2. L-ESN Design Flow. The input point cloud is split, added 

with noise, and fed through the reservoirs. After they converge, the 

output weights are trained to classify the point cloud data. 
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The parallel reservoir approach classifies high 

volume inputs like the high-resolution point clouds 

of this work without exhibiting exponential training 

times associated with a single reservoir. Instead, 

training times increase linearly with the parallel 

reservoirs. The neuron states of each reservoir is 

concatenated into a single state vector, which can 

be defined as the input point cloud transformation 

into a linearly separable space that may be 

interpreted by the trained output weights. The 

parallel reservoir approach increases neuron-to-

input ratio, needed to classify the LiDAR 

benchmark, as it has point clouds of greater size 

than most images. 

   A static input image independent of time can be 

represented as a time-series image for compatibility 

with the ESN by running the image through a 

standard Gaussian white noise filter multiple times 

to let the neurons in the reservoir converge and 

reach a classification. The added noise has been 

shown in many papers to improve classification 

results and is explained well in [12]. By training the 

algorithm to a noisier signal than the actual one, the 

features of a noise-free image are more identifiable 

to the model. Thus, the classification boundaries, 

generated by the reservoir and interpreted by the 

trained output weights, are more robust to noise and 

adaptable to subtle imperfections of the sensor 

system. 

 

3. Testing Dataset and L-ESN Parameters 
The tests of this report use a benchmark dataset 

that is then formatted to work with the L-ESN. The 

parameters of the ESN are essential for competitive 

performances. Training and testing were run on an 

Intel Core i7 vPRO at 2.3GHz. The setup of these 

components for the tests in this report is described 

in the remainder of this section. 

 

3.1. Benchmark Dataset 
The RELLIS-3D dataset was used for these tests 

[13]. The dataset contains color image sequences of 

complex off-road terrains such as trails, parks, and 

fields during ideal sunny conditions. They were 

taken using a camera mounted on a small mobile 

robot platform. The dataset has annotated images 

with 24 different classes. This report only uses 

three classes. Thus, the annotated LiDAR point 

clouds were reclassified according to four classes: 

(1) lowest resistance pathway, (2) moderate 

drivability, (3) low drivability, (4) non-drivable 

terrains. This report is among the first to use the 

ESN for LiDAR and non-binary output 

classifications.  

 

3.2. L-ESN Testing Parameters 
The L-ESN has many global parameters that define 

the system, with its performance depending 

strongly on what the values are initialized at before 

running the algorithm. As full network 

optimization is not within the scope of this report, 

a set of chosen parameters according to Table (1) 

have been used to generate the performance metrics 

of this report, and is based on running numerous 

trial runs and evaluating its output. The number of 

train/test samples in each epoch is split 80% train 

and 20% test from a randomly selected 120 images. 

The added white Gaussian noise has signal-to-noise 

ratio of 10 and the reservoirs will have 30 time-

steps to converge upon a classification. These 

numbers are based on an understanding of the 

network dynamics and ability to perform quick 

evaluations from ultra-fast training times. A low 

spectral radius, input scaling factor, and learning 

rates are expected for signals exhibiting highly non-

linearly separable data like discrete images. 

 
Table 1. L-ESN Global Parameters. These settings 

produce the 4-classification results of this work. 

L-ESN Parameters  Value  

Train/Test Samples  120  
Neurons  400  
Reservoir Connectivity  10%  
Input Scaling  1  
Spectral Radius  0.008  
Learning Rate  0.08  
Time Steps  30  
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4. L-ESN Metrics and Analysis 
 

With the global parameters defined, input signals 

pre-processed, and training complete, the L-ESN 

performances can be explored. As seen from the 

visualizations of Figure 3, the unregulated 

RELLIS-3D data is mapped to a corresponding 4-

class semantic segmented point cloud that highly 

correlates with the actual annotated image. Point 

cloud classification error is calculated by 

subtracting the output and training image and then 

dividing by the total number of points. The 

classification rate for the parameters of Table 1 is 

83.1%, with a point cloud processing time of 1.2 

seconds, and training time of 31 minutes. 

Comparison to state-of-the-art algorithms using 

RELLIS-3D include the HRNet at 82.4% and 

GSCNN at 80.8%, both trained to segment LiDAR 

inputs into 19 classifications [14-15]. 

 

4.1. Architecture Optimization 
 

While network optimization is outside the scope 

of this report, a grid search was performed on the 

number of parallel reservoirs and number of 

neurons per reservoir to understand how improved 

the classification is from higher point cloud-to-

neuron ratios. With a total of 131,072 points, the 

maximum point-to-neuron ratios tested in this work 

is 82:1 which uses 1,600 total neurons. However, 

many more parallel reservoirs may be used to 

increase the neuron count. Performances generally 

improved for higher numbers of total neurons. For 

higher neuron counts, the training time increases. 

The extent of these trends is promising but require 

further investigation to understand how higher 

resolution and multi-sensor inputs affect the L-ESN 

architecture, error rates, and training time. 

Dissimilar datasets from the one used in this work 

will significantly alter the number of parallel 

reservoirs and number of neurons per reservoir that 

result in minimum error rates. Thus, when new data 

is introduced, the L- ESN can be quickly re-trained 

 
Figure 3. Example perception instance. (a) A LiDAR point cloud is 

sent to the perception algorithm. (b) The ESN receives the frame and 

classifies each pixel. (c) The segmented output is converted to a cost 

map. 

with a grid search to find the new optimal 

architecture. The duration/stability of this optimal 

point is proportional to the consistency of the 

environment. For wildly changing scenes such as 

single-cell thunderstorms or dust storms, the L-

ESN performance is expected to dramatically 

decrease. 
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5. Cost Map for Local Planning 
Autonomous navigation typically requires 

occupancy information of the LiDAR data as 

contextualized by the perception algorithm. To 

complete the perception node, a cost map (or 

occupancy grid) is generated by filling a 500x500 

2D grid with values [0, 0.33. 0.67, 1] representing 

highest, moderate, low, and zero trafficability, 

respectively. Figure 3c shows an example of the 

generated cost map that may be sent to the local 

navigation planner. White points represent the zero 

trafficability case while the darker points 

correspond to more drivable regions. An important 

distinction is noted that the background (any area 

with no associated points) is also black, making it 

visually seem like drivable region. However, only 

the defined points in the cost map are used for local 

mapping and planning. The L-ESN can be trained 

and imported as a pre-trained network along with 

the cost map. Communication is done via ROS2 

and consists of initializing nodes for the L-ESN and 

cost map, such that they obtain LiDAR point clouds 

and process it continuously. 

 

6. Discussion of Results and Future Work 
The processing time per image is 1.9 seconds but 

should be within 60 milliseconds (i.e. 60 frames per 

second) for usage on moving vehicles, since the 

response time is critical for reacting to tire-soil 

mobility dynamics. Adaptive optimization of the 

architecture is a unique ability of the L-ESN since 

generally the network is established and unchanged 

during all training. There are clear trade-offs to 

using those CNN-based algorithms over the L-

ESN, but for this application the L-ESN is a 

significantly more effective algorithm that can be 

scaled to contain a more robust ontology and adapt 

to new settings rapidly. Furthermore, the L-ESN 

can be adapted to different modalities that either 

perform faster training at the expense of error rates 

or vice versa. The biggest flaw of the L-ESN in this 

work is relatively high-performance instability 

when the finely tuned global parameters are 

changed, making optimization crucial to 

maintaining competitive error rates. The 

performance bounds when given significantly large 

reservoir sizes is to be explored in future works. 

Inaccuracies of the manually labeled point clouds 

are mostly in the fine details, such as from grass, 

close-up objects, obscure objects, etc. Therefore, 

when the L-ESN detects objects that were not 

manually labeled, it implies that the real error rate 

of the L-ESN is lower by a small amount, as it 

slightly out-classified the labels at certain points. 

In future works, this L-ESN approach will be 

explored for automatic feature extraction, faster 

processing speeds, automated hyper-parameter 

optimization, and usage with transfer learning 

techniques. 

 

7. Conclusion 
This work has shown an integration of a 

perception algorithm used in the novel way of 

processing LiDAR point clouds along with cost 

map generation for navigation planning and 

integration within autonomous vehicle systems. 

The algorithm has competitive classification rates, 

and low training requirements/processing times as 

desired for perception of off-road terrains. Test 

results show decreasing average point cloud 

classification error when increasing the number of 

parallel reservoirs and reservoir size. More 

investigation into the effects of reservoir size and 

the number of parallel reservoirs is in future works. 

Training takes minutes instead of hours, with as 

few as 120 training/testing samples, making it a 

promising approach to terrain mapping with 

unmanned autonomous vehicles. 
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